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Lithium-ion batteries, recognized with the Nobel Chemistry 
Prize in 2019, are critical for consumer electronics, electric 
vehicles and stationary storage. Further improvements of the 

energy density of Li-ion batteries are a grand challenge within the 
field1–5. Li metal is considered the ultimate anode for next-generation 
batteries due to its high theoretical capacity (3,860 mAh g–1) and 
low reduction potential (–3.04 V versus the standard hydrogen 
electrode). However, Li metal anodes face two fundamental chal-
lenges: first, Li metal is highly reactive, and second, the Li metal 
anode undergoes extreme volume changes during cycling3,5. Several 
effective solutions, such as host materials6, artificial solid electro-
lyte interphase (SEI)5 and advanced electrolytes7, have significantly 
improved the cycle life of metallic Li anodes.

Despite this progress in electrode stabilization, the excessive 
capacities and thickness of the available Li metal foils remain a criti-
cal yet unresolved challenge in this field4,8. A practical Li metal bat-
tery (LMB) requires a thin Li metal foil with an areal capacity of 
less than 4 mAh cm−2 to pair with common lithium transition metal 
oxide cathodes (having an areal capacity of 3 to 4 mAh cm−2)4,9. This 
requires the thickness of Li metal to be ≤20 μm (Supplementary 
Note 1). Additionally, conventional Li-ion batteries form a SEI on 
the anode. The formation of the SEI causes a loss of active Li and 
capacity (≤1 mAh cm−2) in the first cycle10, calling for an even thin-
ner Li metal foil (≤5 μm thick) for an ideal Li compensation purpose 
to achieve 100% initial Coulombic efficiency (ICE) in the conven-
tional anode (defined as precise prelithiation). The recent anodeless 
LMBs have high energy density but low Coulombic efficiencies in 
the initial several cycles, leading to fast Li loss and capacity decay 
in the initial cycles11. Adding a thin Li metal foil to the cell could 
compensate for this Li loss without sacrificing energy density12–14.

However, existing extrusion-based fabrication technologies15 
are capable of producing Li metal foils with thicknesses of only 20 
to several hundreds of micrometres4,16. Extruding free-standing Li 
metal foils that are less than 20 micrometres thick presents the chal-
lenge of mechanical fragility and micro-scale manufacture capabil-
ity. These thick Li foils have severely limited the energy density of 
LMBs (Supplementary Fig. 1). Electrochemical deposition17 and 
vacuum evaporation18 of Li are the main methods for fabricating 
micrometre-thin Li, but these methods are costly and rely on heavy 
substrates, limiting their practicability. A simple and low-cost pro-
cess for preparing free-standing thin Li metal foils is a critical and 
unresolved challenge that requires a new technology.

Here, we developed a process that generates an ultrathin, 
free-standing Li metal foil. First, we use a tunable calendaring pro-
cess to decrease the thickness of a reduced graphene oxide (rGO) to 
0.3 to 20 μm. We then load metallic Li by edge-contacting molten Li 
to the rGO. As a result, Li is distributed inside the internal channels 
of the rGO while the rGO retains the micrometre-scale thickness. 
The thickness of the obtained Li foils ranges from 0.5 to 20 μm (cor-
responding to ultralow areal capacities of 0.089 to 3.678 mAh cm−2), 
which breaks the limitations of commercially available Li films (20 
to 750 μm thick, 4 to 150 mAh cm−2 capacity). Moreover, our Li foils 
also exhibit increased mechanical strength (525% increase in hard-
ness for resisting permanent plastic deformation), free-standing 
ability and flexibility. The tunable and ultralow capacity of this Li 
metal film makes it ideal for compensating for the initial loss of Li 
in both graphite anodes and silicon anodes. When this film is used, 
the initial 8% capacity loss is recoverable in conventional Li-ion 
full cells. In LMBs, the three-dimensional (3D) host structure of 
the thin foils guides highly reversible Li dissolution/deposition and 
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prevents rapid fracture of the anode, enabling a cycle life that is pro-
longed by nine times.

ultrathin robust free-standing Li composite film fabrication
There are three key steps for the fabrication of ultrathin Li films. 
First, an ultrafast self-expansion and reduction (USER) reaction19 
of dense graphene oxide (GO) stacks it into a porous, expanded and 
reduced graphene oxide film (eGF) as the lithium host. Second, a 
micrometre-scale thickness is made possible by controlled cal-
endaring of the lithium host (Fig. 1a). Third, the composite is 
fabricated by edge-contacting molten Li absorption into the host  
(Fig. 1b,c).

The GO film is chosen because it makes the process scalable 
and it has good mechanical strength and flexibility (Supplementary 
Fig. 2a,b and Supplementary Video 1). By contacting the edge of 
the GO film with a 350 °C hotplate inside an inert atmosphere 
glove box, the USER reaction immediately starts from the touch-
point and rapidly spreads across the whole film within milliseconds 
(Supplementary Fig. 2c and Supplementary Video 2). This reaction 
is due to the fast decomposition of abundant oxygen-containing 
functional groups in GO into carbon monoxide and dioxide gases 
when superheated (Supplementary Fig. 2d,e). The highly exother-
mic nature of the USER reaction makes it spread easily across the 

GO film from a single touchpoint. These internally generated gases 
were quickly released to create high porosity submicrometre-level 
channels inside the eGF, thus expanding the film thickness19. After 
the USER reaction, the film expands from a less than 1-μm-thick 
GO film to a ≥30-μm-thick eGF. Abundant submicrometre-sized 
channels are also generated inside the eGF as confirmed by both 
cross-sectional scanning electronic microscope (SEM) images  
and Brunauer–Emmett–Teller surface area analysis (Supplementary 
Fig. 3). This 3D porous and lithiophilic eGF is a promising Li host, 
but the film is too thick (≥30 μm; Fig. 1d and Supplementary Fig. 3)  
and is not easily controlled during the USER reaction. Direct infu-
sion of Li into a thick host (≥30 μm in eGF, 50 to 800 μm thick in 
previously reported hosts6,20–23) generates a thick Li foil (≥30 μm 
thick; right in Fig. 1e). As a result, these films have the same prob-
lems with energy density as pure Li metal foils of the same thickness.

To solve this thickness issue, we developed a host compression 
procedure with micrometre-scale precision (Fig. 1a) by using a roll-
ing press (Supplementary Fig. 4a and Supplementary Video 3). The 
thickness of eGF is tunable from the initial 30 μm to thicknesses 
of 300 nm and 5 μm (Fig. 1f) by simply controlling the distance 
between each roller. These thicknesses are one to three orders of 
magnitude thinner than previously reported hosts (50 to 800 μm 
thick)6,20–23. Despite the compression, submicrometre-wide channels  
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Fig. 1 | Design and fabrication of micrometre-scale thin host and Li metal film. a, Controllable calendaring process for thick and porous egF films into 
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still exist in the porous eGF after calendaring, which allow for Li 
infiltration. After compression, contacting the edge of the ultra-
thin eGF film with molten Li (Fig. 1b) causes rapid capillary 
absorption of metallic Li into the eGF and turns the material into 
a Li-metal-containing Li@eGF film (Supplementary Fig. 4b and 
Supplementary Video 4). This rapid molten Li infusion process is 
due to the high lithiophilicity (from oxygen-containing functional 
groups in rGO) and abundant submicrometre channels in eGF, and 
is not achievable with common hard carbon or carbon nanotube 
materials (Supplementary Fig. 4c–e). This edge-contact Li absorp-
tion approach avoids complete immersion of the material with Li 
and stores Li only within the channels of the host, rather than on 
the surface22,23. Hence, the Li@eGF film retains its micrometre-scale 
thickness and free-standing ability.

This fabrication procedure does not require any sacrificial elec-
trolyte or materials, while only the last step of molten Li infusion 
demands an argon atmosphere. These advantages greatly benefit 
its cost effectiveness and scalability over common thin Li metal 
film products, produced by electrochemical deposition, vacuum 
evaporation and multi-step calendaring methods, and demanding 
a large volume of costly argon or vacuum-atmosphere-based manu-
facturing (Supplementary Table 1). Compared with thick commer-
cialized Li metal films (20, 50 and >100 μm thick; Supplementary  
Fig. 5) and previously reported Li composite electrodes (30 to 
800 μm thick; Fig. 1e)6,20–23, our process reliably makes free-standing 
Li@eGF films with thicknesses of 1 and 5 μm (Fig. 1g), illustrating 
a promising micrometre-scale electrode manufacturing strategy for 
the Li battery industry.

The thickness of Li@eGF electrodes can be further tuned with 
submicrometre-scale control. Controlling the distance between 
the rollers during calendaring, the thickness of the porous eGF 
hosts is tunable to be around 0.3, 1, 2, 5, 10 and 20 μm (Fig. 1d and 
Supplementary Figs. 6 and 7). Edge-contact infusion of Li into these 
ultrathin hosts makes flexible and free-standing Li@eGF electrodes 
with thicknesses of 0.5, 1, 2, 5, 10 and 20 μm, respectively (Fig. 1g and 
Fig. 2a–e). These procedures and electrodes solve the limitations of 
controllably preparing thin Li metal foils at micrometre-level thick-
ness. Cross-sectional SEM images (Fig. 2a–e), top-view SEM images 
(Supplementary Fig. 8), X-ray diffraction spectra and X-ray photo-
electron spectroscopy (XPS) spectra (Supplementary Fig. 9) demon-
strate that most of the original submicrometre-wide void channels 
in eGF hosts were filled with metallic Li, supporting the successful 
fabrication of a micrometre-thin hosted metallic Li composite elec-
trode. These micrometre-level thicknesses of Li@eGF allow for a 
wide range of areal capacities: 0.089, 0.196, 0.391, 0.853, 1.896 and 
3.678 mAh cm−2 when charged to 1.5 V (corresponding to 0.5-, 1-, 
2-, 5-, 10- and 20-μm-thick Li@eGF films, respectively; Fig. 2f). 
For comparison, the areal capacities of the thinnest available pure 
Li metal films (20 and 50 μm thick) are 4 and 10 mAh cm−2, respec-
tively (Supplementary Fig. 5a–c). In addition, 40- to 60-μm-thick 
free-standing Li@eGF electrodes can also be easily fabricated by 
increasing the thicknesses of the GO film and eGF host beforehand, 
affording controllable areal capacities of 8 to 12 mAh cm−2. These 
higher capacities of Li@eGF anodes would be particularly suitable 
for high-loading Li–S battery applications (Supplementary Fig. 5d–
g). The Li@eGF electrodes have similar electrochemical properties 
and similar voltage–capacity profiles to pure Li metal, suggesting no 
compromise to battery operation voltage.

The mechanical strength of the Li@eGF electrode is much stron-
ger than that of pure Li metal films, which is important for the pro-
cessing of ultrathin electrodes. Representative force–displacement 
responses of indentations on the electrodes show that the indenta-
tion force on Li@eGF was around 150% higher than that on pure Li 
with the same indentation depth (Fig. 2g), indicating the mechani-
cal strength of the Li@eGF is improved compared with Li. Hosted 
Li@eGF films also have higher hardness (41.13 MPa) than pure Li 

(6.58 MPa; Fig. 2h)24,25, suggesting they are more resistant to plas-
tic deformation induced by shear flow, which is the most common 
mechanical degradation mechanism of Li metal film. The elas-
tic modulus of Li@eGF (9.34 GPa) is also about 48% higher than 
pure Li (6.31 GPa; Fig. 2h)24–26. Furthermore, the tensile strength 
(11.41 MPa) and Young’s modulus (738.87 MPa) of the Li@eGF film 
are also much higher than those of pure Li metal film (1.814 MPa in 
tensile strength and 110.56 Mpa in Young’s modulus; Supplementary 
Fig. 10). In addition to these properties, ultrathin Li@eGF films 
have excellent flexibility and retain their original shape and func-
tion after rolling (Fig. 2i and Supplementary Video 5). Together, 
these results indicate that the 3D eGF matrix provides superior 
durability and recoverability of Li, which is important for the prac-
tical operation and assembling of thin electrodes. The improved 
mechanical strength and flexibility of ultrathin Li@eGF electrodes 
are encouraging for their future application in the battery industry.

Precise prelithiation on graphite anode
Benefiting from their ultralow and tunable capacity, these Li@eGF 
foils are ideal for prelithiating Li-ion battery anodes (Fig. 3a). Their 
tunable thickness makes precise compensation of the capacity loss 
in conventional Li-ion batteries from SEI formation possible10,27. 
Without prelithiation, graphite || Li half cells have a relatively low 
ICE of around 93%, suggesting ~7% of the available Li is con-
sumed by SEI formation. This loss corresponds to a deviation of 
~0.25 mAh cm−2 between first cycle charge/discharge capacity, in a 
graphite anode with mass loading of 8.65 mg cm−2. By covering a 
2-μm-thick Li@eGF film (containing a capacity of 0.391 mAh cm−2) 
on the top surface of a graphite anode, the Li@eGF film partially 
prelithiates the graphite and compensates this initial Li loss. The 
ICE of the prelithiated graphite anode improves to 100% (Fig. 3a–c), 
suggesting that this 2-μm-thick Li@eGF film fully compensates for 
the initial Li loss amount in graphite anodes. A 5-μm-thick Li@
eGF film (0.853 mAh cm−2) raises the ICE to 117.6%, suggesting 
excessive Li compensation that will lead to metallic Li deposition 
in the graphite anode. Importantly, precisely prelithiated graphite 
anodes exhibit no obvious compromise in anode cycling stability 
(Supplementary Fig. 11) and have excellent consistency between 
batches (Fig. 3c). These results suggest Li@eGF additives for precise 
prelithiation could be more practical than current electrochemical 
prelithiation processes27–30.

The precise prelithiation with ultrathin Li@eGF films allows for 
full recovery of the irreversible SEI-based capacity loss in Li-ion full 
cells (Fig. 3d). The prelithiation improves the capacity of full Li-ion 
cells with graphite anodes (3.22 mAh cm−2) and a lithium iron phos-
phate (LFP) cathode (~3.22 mAh cm−2). Without prelithiation, this 
Li-ion full cell has a theoretical capacity of 3.22 mAh cm−2, but it 
actually had a lower capacity of 2.97 mAh cm−2. This capacity loss 
is due to the initial SEI formation on the anode (Supplementary 
Fig. 1)10,27, as demonstrated by the consistency between the devia-
tion (0.25 mAh cm−2) and aforementioned initial Li loss amount in 
graphite anodes. By coating a 2- or 5-μm-thick Li@eGF film on a 
graphite anode, the capacities of Li-ion full cells are fully recovered 
and stabilized at the theoretical capacity (around 3.22 mAh cm−2). 
As a result, the full-cell ICE improves from 87% to around 96%  
(Fig. 3e and Supplementary Fig. 12), illustrating that this prelithia-
tion function significantly improves the cell capacity and compen-
sates for the initial loss of Li in the anode.

Considering the balanced negative:positive (N:P) capacity ratio 
requirement in full-cell configurations, the capacity of the pre-
lithiation additive must be precisely controlled to avoid excessive 
Li deposition on the anode, which prevents poor battery perfor-
mance and safety hazards31. Prelithiation with 5-μm-thick Li@eGF 
(0.853 mAh cm−2) exceeds the initial Li loss amount of the graph-
ite anode (0.25 mAh cm−2). Expectedly, the full cell suffered from 
metallic Li plating, because the graphite cannot accommodate all 
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Li ions from the cathode during cell charging. This plating induces 
higher-voltage plateaus (discharge at ~3.4 V and charge at ~3.5 V; 
Fig. 3f) because of the metallic Li deposition on the anode (proved 
by X-ray diffraction spectra; Fig. 3g). By contrast, the graphite || LFP 
full cell prelithiated with 2-μm-thick Li@eGF shows no evidence of 
metallic Li plating, demonstrating that all Li ions were accommo-
dated by the graphite anodes. Top-view SEM images further show 
that Li dendrites were plated on the anode when the 5-μm-thick Li@
eGF is used (Fig. 3h), whereas graphite prelithiated with 2-μm-thick 
Li@eGF has a clean surface without any Li dendrites (Fig. 3i). 
These results demonstrate the importance of precisely tuning the 
micrometre-level thickness of Li metal electrodes for prelithiation.

Precise prelithiating and stabilizing nano-silicon anode
The tunable thickness of micrometre-thin Li@eGF makes it ideal for 
prelithiating advanced nano-silicon anodes. Si has a high theoretical 
capacity (4,200 mAh g−1), but it also has a low ICE (~79.4% in the 
Si nanoparticle anode). This low ICE corresponds to a deviation of 

~0.8 mAh cm−2 between capacities of the first cycle charge/discharge 
in a nano-Si anode with mass loading of 1.2 mg cm−2 (Fig. 4a and 
Supplementary Fig. 11c)32,33. The 5-μm-thick Li@eGF is the most 
desired thickness for prelithiating this nano-Si anode, as its capac-
ity (0.853 mAh cm−2) precisely matches the initial Li loss amount to 
improve the anode ICE to 100.5% (Fig. 4b). The 2-μm-thick Li@
eGF (0.391 mAh cm−2) only partially compensates the Li loss and 
results in an ICE of 88.1%. Prelithiated Si anodes have similar volt-
age profiles to Si anodes without prelithiation, demonstrating that 
there is no compromise to electrochemical behaviour or kinetics 
of the anode (Fig. 4c). The successful prelithiation of both conven-
tional graphite and advanced nano-Si anodes by Li@eGF proves its 
universality as a prelithiation material for Li-ion batteries.

In addition to the prelithiation function, the Li@eGF film also 
minimizes the volume-expansion-induced cracking33 and improves 
the cycling stability of nano-Si anodes. Covering the top surfaces 
of the anodes with the 2- and 5-μm-thick Li@eGF improves their 
specific capacities to 2,406 and 2,565 mAh g−1, respectively (Fig. 4d),  
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with 80% capacity retention after ten cycles (Fig. 4a) and 56% 
retention after 100 cycles (Supplementary Fig. 13). These metrics 
far surpass the performance of the nano-Si anode without Li@
eGF coatings (specific capacity of 2,225 mAh g−1 with 57% reten-
tion after ten cycles). SEM images further show obvious cracks at 
both the submillimetre and submicrometre scales in the uncoated 
nano-Si electrode after ten cycles (right side in Fig. 4e, Fig. 4f and 
Supplementary Fig. 13c,d). These cracks suggest that the large 
volume change of Si nanoparticles during cycling causes the dis-
connection of the active materials and large losses of capacity  
(Fig. 4h)32. By comparison, the Si nanoparticles beneath the Li@eGF 
coating had excellent integrity after cycling (left side in Fig. 4e,g 
and Supplementary Fig. 13e,f). This absence of cracking is due to a 
unique double-protection function of the Li@eGF film after preli-
thiation, which maintained the original 3D continuous and porous 
structure of eGF after all of the metallic Li component was extracted 
away for prelithiation (Fig. 4i and Supplementary Fig. 13g): the  

conductive eGF film acts as a secondary current collector for active 
material utilization, and the continuous and robust eGF film tightly 
holds the surficial Si nanoparticles together to resist the disconnec-
tion of active materials. Therefore, our Li@eGF can provide not 
only tunable prelithiation capabilities, but also a double-protection 
function for the utilization and stabilization of high-volume-change 
electrode materials.

Thin yet stable Li composite anode for Li metal full cell
The advantages of the 3D lithiophilic host, micrometre-level thick-
ness and improved mechanical strength make this Li@eGF film 
a strong candidate as a thin and stable Li metal anode for practi-
cal high-energy-density LMBs4,34. In a single-layer pouch cell 
using a commercially available 20-μm-thick pure Li metal anode 
(~4 mAh cm−2) and a LFP cathode (3.24 mAh cm−2), fast battery fail-
ure was always observed at early cycles (Fig. 5a). This failure starts 
as a sudden voltage drop during the discharging step in the 21st 
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cycle (Fig. 5b), and the battery circuit broke with full capacity loss 
in subsequent cycles (that is, they have no charge/discharge capacity 
at all; Supplementary Fig. 14). This battery circuit-break failure dur-
ing discharging is totally different from the commonly accepted fail-
ure mechanisms of LMBs3–5 (that is, dendrite-induced short-circuit 
during cell charging35 and gradual Li depletion after long cycling36; 
Supplementary Fig. 15).

To explain this failure mode, the 20-μm-thick pure Li metal 
anode was extracted from the pouch cell after 20 cycles. Holes and 
cracks that disconnected from the anode are apparent across much 
of the electrode (Fig. 5d). SEM images illustrate that these cracks 
gradually merge in the initial cycles and broaden during subsequent 
cycles (Fig. 5e, Supplementary Fig. 16), suggesting that they are 
caused by the uneven electrochemical stripping of metallic Li dur-
ing repeated discharging steps37. These growing cracks rapidly sepa-
rate the original thin Li metal anode into several parts of ‘dead Li’16 
and disconnect large pieces of the active Li metal electrode mate-
rial from the final tab current collector, long before depletion of  
active materials4.

Replacing the pure Li metal film with a 20-μm-thick Li@eGF 
film greatly improves the cycling stability (Supplementary Fig. 17). 
The fabricated Li@eGF || LFP full cell retains 81% of its capacity 
after 200 cycles (Fig. 5a), with only a tiny increase in overpotential  

(Fig. 5c). Importantly, digital photos and SEM images show the 
absence of cracks and retention of the original 3D continuous struc-
ture in this 20-μm-thick Li@eGF anode after 200 cycles (Fig. 5f,g and 
Supplementary Fig. 17). The improved stability of the Li@eGF elec-
trode is attributed to its unique characteristics: (1) the uniform dis-
tribution of metallic Li in the 3D lithiophilic rGO matrix suppresses 
the inhomogeneity of local current density, restricts the uneven 
stripping of Li and improves the Li plating/stripping reversibility 
(Supplementary Fig. 18a), which is uncontrollable and self-aggravated 
in pure Li metal anodes6; (2) the low weight ratio and high conduc-
tivity of the rGO matrix provides a current-collecting function, even 
when Li metal species are all stripped away; and (3) the high mechan-
ical strength of the Li@eGF also suppresses the inhomogeneous elec-
trochemical plating and stripping during cycling38. Therefore, this 
ultrathin hosted Li@eGF film improves both the cycling stability of 
thin Li-metal-anode-based full cells and the energy density of the 
cell, and these improvements are achievable in both carbonate and 
ether electrolyte systems (Supplementary Fig. 18).

Conclusions
In summary, we have developed a process to fabricate micrometre-thin, 
free-standing and hosted Li metal films and demonstrate their appli-
cations for prelithiation and high-energy-density LMBs. Infusing 
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molten metallic Li into a host with tunable submicrometre-scale 
thickness results in an ultrathin Li@eGF film with controllable 
and ultralow thickness (0.5 to 20 μm) and areal capacity (0.089 to 
3.678 mAh cm−2). These thicknesses and capacities are one to three 
orders of magnitude smaller than those of existing Li metal films. The 
thinness, ultralow capacity and hosted structure provide many tech-
nological possibilities that cannot be satisfied by the existing thick Li 
metal electrodes. Benefiting from its controllable and ultralow thick-
ness, prelithiation with this Li@eGF film appropriately compensates 
for the loss of capacity in the initial cycle of graphite (ICE of 93%) and 
Si anodes (ICE of 79.4%). As a result, these anodes achieve an ideal 
ICE of ~100% in the first cycle, along with 8% enhanced capacity in 
Li-ion full cells. The 3D matrix host structure also prevents the rapid 
rupture of ultrathin Li metal anodes during cycling and improves the 
cycle life of LMBs by nine times. By reducing the electrode thickness 
to the micrometre scale and improving anode stability simultane-
ously, our tunable micrometre-thin and free-standing Li@eGF film 
provides a pathway for future high-energy-density Li batteries. It also 
suggests that this micrometre-scale technology could break the limi-
tations of electrode thickness in current manufacturing.

Methods
Preparation of the ultrathin eGF host. Commercially available GO solution 
(Hangzhou Gaoxi Technology, 9 mg ml−1) was blade-coated onto a glass substrate 
using a doctor blade, dried at room temperature, peeled off from the glass 
substrate and transferred into a nitrogen-filled glove box. The USER reaction 
was conducted by touching the GO film to the 350 °C hotplate inside the glove 
box (Supplementary Video 2), resulting in rapid reduction and self-expansion. 
The expanded porous eGF was sandwiched between two stainless-steel or 
polypropylene films, and calendared into the desired thickness by controlling the 
distance of the gap between two rollers.

Fabrication of ultrathin Li@eGF electrode. Solid lithium was annealed to 350 °C 
on a hotplate to prepare a molten lithium droplet inside an argon-filled glove box. 
The ultrathin lithium-containing Li@eGF anode was prepared by contacting the 
edge of ultrathin calendared eGF with the molten lithium droplet to absorb lithium 
into the host, as shown by Supplementary Video 4.

Electrochemistry. The performances of half cells with prelithiated anodes were 
evaluated with the galvanostatic cycling of cells (CR-2032). Graphite or Si anodes 
(1 cm2) were used as working electrodes assembled in an argon-filled glove box, 
with pure lithium metal foil (1 cm2) as counter electrodes. The performances of 
full cells with prelithiated anodes were evaluated by the galvanostatic cycling of 
coin cells with the graphite anode and LFP cathode (1 cm2). The ultrathin Li@eGF 
(1 cm2) was placed on top of a graphite or Si working anode for prelithiation. One 
layer of Celgard separators (Celgard 2325, 25 μm thick) was used to separate the 
electrodes. The carbonate electrolyte was prepared by dissolving 1 M LiPF6 in 1:1 
(v/v) ethylene carbonate (BASF) and diethyl carbonate (BASF) with 1% vinylene 
carbonate and 10% fluoroethylene carbonate as additives. The 50 μl electrolyte was 
added onto the cathode and separator during cell assembly. Battery cycling data 
were collected using LAND and Arbin eight-channel battery testers at  
room temperature.

Lithium metal || LFP pouch cells were fabricated inside an argon-filled glove 
box, using 20-μm-thin Li foil or Li@eGF film as the anode, an LFP cathode 
and one layer of Celgard 2325 separator. The LFP cathode was connected to an 
aluminium tab by welding, while the lithium foil was connected to a nickel tab 
by adhering and pressing inside the argon-filled glove box. A controlled amount 
of carbonate electrolyte (10 g Ah−1) was injected into the pouch cells inside the 
argon-filled glove box, followed by vacuum sealing. The fabricated batteries were 
rested for 24 h before cycling. Battery cycling data were collected using a VMP3 
potentiostat (Biologic) at room temperature.

Graphite anodes were prepared by mixing graphite powder (MTI) with 
polyvinylidene fluoride (MTI) and carbon black (TIMCAL) at a weight ratio of 
92:2:6 using N-methyl-2-pyrrolidone (NMP) solvent. The slurry was blade-coated 
on copper foil (MTI), dried in an 80 °C vacuum oven and calendared before use. 
The areal mass loading of graphite was ~8.65 mg cm–2. Si anodes were prepared 
by mixing nano-Si powder (50 to 100 nm in diameter, MTI) with carboxymethyl 
cellulose, styrene–butadiene rubber (MTI) and carbon black (TIMCAL) at a 
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Fig. 5 | ultrathin Li@eGF film improves stability of Li metal || LFP full cell. a, galvanostatic cycling of LFP pouch cell with ultrathin Li foil and Li@egF 
film with initial two activation cycles at 0.05 C and long cycling at 0.5 C. 1C = 150 mA g–1. b,c, Voltage profiles of LFP full cells after different cycles, using 
20-μm-thick pure Li metal foil (b) or 20-μm-thick Li@egF film (c). d, Digital camera photos of 20-μm-thick pure Li foil before and after 20 cycles in pouch 
cell, showing that non-uniform cracks and fissures were gradually broadened to rupture the original film. e, Top-view SEM images of 20-μm-thick pure 
Li foil before cycling, and after 5, 10 and 20 cycles, as indicated by arrows. The holes and cracks were gradually broadened during these cycles, with a 
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weight ratio of 60:10:10:20 using water as a solvent. The slurry was blade-coated 
on copper foil (MTI), dried in an 80 °C vacuum oven and calendared before 
use. The areal mass loading of Si was ~1.2 mg cm–2. LFP cathodes were prepared 
by mixing LFP powder (MTI) with polyvinylidene fluoride and carbon black 
(TIMCAL) at a weight ratio of 90:5:5 with NMP solvent. The cathode slurry was 
blade-coated on conductive carbon-coated aluminium foil (MTI), dried in an 
80 °C vacuum oven and calendared before use. The areal mass loading of LFP was 
~20.3 mg cm–2.

Characterization. SEM images were taken with an FEI Magellan 400 XHR 
scanning electron microscope at an acceleration voltage of 5 kV. Focused ion beam 
SEM images were taken through cross-sectioning a sample with a Ga+ ion beam 
and observing with the electron beam on an FEI Helios NanoLab 600i DualBeam 
focused-ion-beam/SEM. Before SEM characterization, the cycled batteries were 
disassembled in an argon-filled glove box, then the electrodes were gently rinsed 
with diethyl carbonate to remove residual salt. X-ray diffraction patterns were 
recorded on a PANalytical X’Pert instrument with preliminary sample sealing 
inside an argon-filled glove box. XPS analysis was obtained on a PHI VersaProbe 
1 scanning XPS microprobe with an air-free transfer vessel. The binding energies 
were calibrated with respect to the C 1s peak at 284.6 eV. During the USER 
reaction, the generated gas was collected by a sealed tube covering the GO film, 
and then injected into a gas chromatograph (SRI 8610C). A Netzsch STA 449 
instrument was used for thermogravimetric analysis at a heating rate of 5 °C min−1. 
Mechanical properties of the samples were measured by a nanoindentation 
instrument (G200, Keysight) in an argon-filled glove box. A continuous stiffness 
measurement using a Berkovich indenter was conducted. The elastic modulus and 
hardness were continuously measured based on the dynamic material stiffness 
during the indentation loading. The maximum indentation depth on the samples 
was set to 5 μm. The loading, holding and unloading times were 10, 5 and 10 s, 
respectively. The hardness and elastic modulus were simultaneously measured 
using the continuous stiffness measurement during the indentation loading, 
by which the influence of Li creep could be eliminated. The tensile strength 
measurement was conducted using an Instron 5565 tester with a 100 N load cell. 
The width, length and thickness of the sample was 7 mm, 10 mm and 50 μm, 
respectively. The loading rate was 10 mm min−1.

Data availability
All relevant data are included in the paper and its Supplementary Information. 
Source data are provided with this paper.
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